Name: _____

(1-6) Graph the function. State the domain and range and draw the asymptote.

Exponential Growth Model	Exponential Decay Model
$y = a(1+r)^t$	$y = a(1-r)^{t}$
$\frac{\text{Compound Interest}}{A = P\left(1 + \frac{r}{n}\right)^{nt}}$	$\frac{\text{Continuously Compounded Interest}}{A = Pe^{rt}}$

- 7. You purchase a new car for \$8,025. It depreciates at a rate of 18% per year. How much will your car be worth in 3 years?
- 8. You put \$2,500 in a savings account with an interest rate of 4.2%. If interest is compounded daily and you never make any additional deposits or withdrawals, how much money will be in your account after 2 years?
- 9. You deposit \$1500 in an account that pays 4.8% annual interest compounded continuously. What is the balance after 4 years?
- 10. You deposit \$4600 in an account that pays .50% annual interest compounded continuously. What is the balance after 10 years?
- 11. You purchase an antique truck for \$22,550. It appreciates at a rate of 3% per year. How much will your car be worth in 15 years?
- 12. You put \$12,000 in a savings account with an interest rate of 3.25%. If interest is compounded monthly and you never make any additional deposits or withdrawals, how much money will be in your account after 7 years?

(13-18) Evaluate the logarithm without using a calculator.

13.	log ₂ 8	14.	log ₆ 1	15.	log ₅ 5
16.	$\log_{\frac{1}{3}} 27$	17.	log 625 5	18.	$\log_{1/3} 81$

(19-20) Graph each function. State the domain and range and draw the asymptote.

19.	$y = \log_5 x$	x	у
	Domain:		
	Danga		
	Kange:		
20.	$v = \log_2(x+1) - 3$		
20.	$y = \log_2(x+1) - 3$	x	y
20.	$y = \log_2(x+1) - 3$	x	y
20.	$y = \log_2(x+1) - 3$ Domain:	<i>x</i>	y
20.	$y = \log_2(x+1) - 3$ Domain:	<i>x</i>	y
20.	$y = \log_2(x+1) - 3$ Domain:	x	<i>y</i>
20.	$y = \log_2(x+1) - 3$ Domain: Range:	x	y
20.	$y = \log_2(x+1) - 3$ Domain: Range:	x	<i>y</i>
20.	$y = \log_2(x+1) - 3$ Domain: Range:		y
20.	$y = \log_2(x+1) - 3$ Domain: Range:		y
20.	$y = \log_2(x+1) - 3$ Domain: Range:		y

(21-24) Find the inverse of the function.

21.
$$y = (0.4)^x$$
 22. $y = \log_8 x$ 23. $y = \ln(x-2)$ 24. $y = 6^x + 5$