[bookmark: _GoBack]Computer Programming
Chapter 2 – Assignment 8		Name:_______________________

	Exercise 2.83 Below is the outline for a Book class, which can be found in the book-exercise project. The outline already defines two fields and a constructor to initialize the fields. In this and the next few exercises, you will add features to the class outline.

Add two accessor methods to the class—getAuthor and getTitle—that return the author and title fields as their respective results. Test your class by creating some instances and calling the methods.

/**
* A class that maintains information on a book.
* This might form part of a larger application such
* as a library system, for instance.
*
* @author (Insert your name here.)
* @version (Insert today’s date here.)
*/
public class Book
{
// The fields.
private String author;
private String title;
/**
* Set the author and title fields when this object
* is constructed.
*/
public Book(String bookAuthor, String bookTitle)
{
author = bookAuthor;
title = bookTitle;
}
// Add the methods here...

}
	

	Exercise 2.84 Add two methods, printAuthor and printTitle, to the outline Book class. These should print the author and title fields, respectively, to the terminal window.

	

	Exercise 2.85 Add a field, pages, to the Book class to store the number of pages. This should be of type int, and its initial value should be passed to the single constructor, along with the author and title strings. Include an appropriate getPages accessor method for this field.

Are the Book objects you have implemented immutable? Justify your answer.

	

	Exercise 2.86 Add a method, printDetails, to the Book class. This should print details of the author, title, and pages to the terminal window. It is your choice how the details are formatted. For instance, all three items could be printed on a single line, or each could be printed on a separate line. You might also choose to include some explanatory text to help a user work out which is the author and which is the title, for example

Title: Robinson Crusoe, Author: Daniel Defoe, Pages: 232

	

	Exercise 2.87 Add a further field, refNumber, to the Book class. This field can store a reference number for a library, for example. It should be of type String and initialized to the zero length string ("") in the constructor, as its initial value is not passed in a parameter to the constructor. Instead, define a mutator for it with the following header:

public void setRefNumber(String ref)

The body of this method should assign the value of the parameter to the refNumber field. Add a corresponding getRefNumber accessor to help you check that the mutator works correctly.
	

	Exercise 2.88 Modify your printDetails method to include printing the reference number. However, the method should print the reference number only if it has been set—that is, the refNumber string has a non-zero length. If it has not been set, then print the string "ZZZ" instead. Hint: Use a conditional statement whose test calls the length method on the refNumber string.

	

	Exercise 2.89 Modify your setRefNumber mutator so that it sets the refNumber field only if the parameter is a string of at least three characters. If it is less than three, then print an error message and leave the field unchanged.

	

	Exercise 2.90 Add a further integer field, borrowed, to the Book class. This keeps a count of the number of times a book has been borrowed.

Add a mutator, borrow, to the class. This should update the field by 1 each time it is called.

Include an accessor, getBorrowed, that returns the value of this new field as its result.

Modify printDetails so that it includes the value of this field with an explanatory piece of text.

	

	Exercise 2.91 Add a further boolean field, courseText, to the Book class. This records whether or not a book is being used as a text book on a course. The field should be set through a parameter to the constructor and the field is immutable.

Provide an accessor method for it called isCourseText.

	

	Exercise 2.92 Challenge exercise Create a new project, heater-exercise, within BlueJ. Edit the details in the project description—the text note you see in the diagram. Create a class, Heater, that contains a single field, temperature whose type is double-precision floating point—see Appendix B, section B.1, for the Java type name that corresponds to this description.

Define a constructor that takes no parameters. The temperature field should be set to the value 15.0 in the constructor.

Define the mutators warmer and cooler, whose effect is to increase or decrease the value of temperature by 5.0° respectively.

Define an accessor method to return the value of temperature.

	

	Exercise 2.93 Challenge exercise Modify your Heater class to define three new doubleprecision floating point fields: min, max, and increment. The values of min and max should be set by parameters passed to the constructor. The value of increment should be set to 5.0 in the constructor. Modify the definitions of warmer and cooler so that they use the value of increment rather than an explicit value of 5.0. Before proceeding further with this exercise, check that everything works as before.

Now modify the warmer method so that it will not allow the temperature to be set to a value greater than max. Similarly modify cooler so that it will not allow temperature to be set to a value less than min. Check that the class works properly.

Now add a method, setIncrement, that takes a single parameter of the appropriate type and uses it to set the value of increment. Once again, test that the class works as you would expect it to by creating some Heater objects within BlueJ.

Do things still work as expected if a negative value is passed to the setIncrement method?

Add a check to this method to prevent a negative value from being assigned to increment.

	

	
	

