

[bookmark: _GoBack]Computer Programming
Chapter 4, Exercises 4.54 to 4.60		Name:_______________________

	Exercise 4.54 Continue working with the club project from Exercise 4.40. Define a method in the Club class with the following description:

/**
* Determine the number of members who joined in the
* given month.
* @param month The month we are interested in.
* @return The number of members who joined in that month.
*/
public int joinedInMonth(int month)

If the month parameter is outside the valid range of 1 to 12, print an error message and return zero.

	Exercise 4.55 Define a method in the Club class with the following description:

/**
* Remove from the club's collection all members who
* joined in the given month, and return them stored
* in a separate collection object.
* @param month The month of the membership.
* @param year The year of the membership.
* @return The members who joined in the given month and year.
*/
public ArrayList<Membership> purge(int month, int year)

If the month parameter is outside the valid range of 1 to 12, print an error message and return a collection object with no objects stored in it.

Note: The purge method is significantly harder to write than any of the others in this class. You should walk through the list backward to avoid creating runtime errors.

	Exercise 4.56 Open the product project and complete the StockManager class through this and the next few exercises.

StockManager uses an ArrayList to store Product items.

Its addProduct method already adds a product to the collection, but the following four methods need completing: delivery (exercise 4.59), findProduct (exercise 4.57), printProductDetails (exercise 4.56), and numberInStock (exercise 4.58).

Each product sold by the company is represented by an instance of the Product class, which records a product’s ID, name, and how many of that product are currently in stock.

The Product class defines the increaseQuantity method to record increases in the stock level of that product.

The sellOne method records that one item of that product has been sold, by reducing the quantity field level by 1.

Product has been provided for you, and you should not need to make any alterations to it.

Start by implementing the printProductDetails method to ensure that you are able to iterate over the collection of products. Just print out the details of each Product returned, by calling its toString method. (Fadoir note: the toString method makes a string that summarizes the product.)

	Exercise 4.57 Implement the findProduct method.

This should look through the collection for a product whose id field matches the ID argument of this method. If a matching product is found, it should be returned as the method’s result.

If no matching product is found, return null.

This differs from the printProductDetails method in that it will not necessarily have to examine every product in the collection before a match is found. For instance, if the first product in the collection matches the product ID, iteration can finish and that first Product object can be returned. On the other hand, it is possible that there might be no match in the collection. In that case, the whole collection will be examined without finding a product to return. In this case, the null value should be returned.

When looking for a match, you will need to call the getID method on a Product.

	Exercise 4.58 Implement the numberInStock method.

This should locate a product in the collection with a matching ID and return the current quantity of that product as a method result. If no product with a matching ID is found, return zero.

This is relatively simple to implement once the findProduct method has been completed. For instance, numberInStock can call the findProduct method to do the searching and then call the getQuantity method on the result.

Take care over products that cannot be found, though.

	Exercise 4.59 Implement the delivery method using a similar approach to that used in numberInStock. It should find the product with the given ID in the list of products and then call its increaseQuantity method.

	Exercise 4.60 Challenge exercises

One: Implement a method in StockManager to print details of all products with stock levels below a given value (passed as a parameter to the method).

Two: Modify the addProduct method so that a new product cannot be added to the product list with the same ID as an existing one.

Three: Add to StockManager a method that finds a product from its name rather than its ID:

public Product findProduct(String name)

In order to do this, you need to know that two String objects, s1 and s2, can be tested for equality with the boolean expression s1.equals(s2)

