[Lesson 2: The Need for
Algorithms

O




Trace programs written in the “Human Machine
Language”

Develop an algorithm to find the smallest playing
card in a row of cards

Express an algorithm in the “Human Machine
Language”

Identify the properties of sequencing, selection and
iteration in the “Human Machine Language”

Evaluate the correctness of algorithms expressed in
the “Human Machine Language”



» Recall the lessons learned about language:
Yesterday’s activity focused on the inherent
difficulties of trying to express precise processes with
written language.

» A few key points:

We need to agree on a set of commands and exactly what
terms mean

The fewer commands we have, the easier it is to agree

We want to know what are the “primitive” operations — the
most basic set of operations that will allow us to do most of the
tasks that the situation requires



The art (and science) of using a well-defined
language of primitive operations to solve problems is
the art and science of algorithms

Algorithm — a precise sequence of instructions for

processes that can be executed by a computer and

are implemented using programming languages
See AP Computer Science Framework

Note: Sequencing, selection, and iteration are the building
blocks of algorithms (you will know what these mean in the
future)

Note: this is one of the 7 “Big Ideas” for AP CSP




One way to think of the study of algorithms is that it
is a study of processes — how can you use a small set
of instructions to clearly and correctly define a
process that will solve some problem?

In the last lesson, you used LEGO blocks and you
attempted to design and algorithm

Any time you are trying to write a precise set of instructions for
a process to solve a problem you are designing an algorithm



In Computer Science we are interested in
computational processes — ones that can be executed
by a computer — which have specific sets of
constraints

We are going to start by thinking of ourselves as a
“Human Machine” that operates on playing cards on
a table.

We will use the “Minimum Card Algorithm — Activity
Guide”



Activity 1: Find Min Card Algorithm

O

» We will use the “Minimum Card Algorithm — Activity
Guide”

» Work in pairs and think about:

o How do you know when to stop?

o Do your instructions state where and how to start?

o Is it clear where to put cards back down after you’ve picked
them up?




As we look at these algorithms you came up with, we
can see some common things you are all making the
human machine do and commonalities in your
instructions

Can we define a language of common Human
Machine commands for moving cards around?

What are the commands or actions most of these
instructions have in common?



Activity 1: Find Min Card Algorithm

O

» What are the commands or actions most of these
instructions have in common?

o SHIFT — some form of shifting hands one position down to the
row left or right

o MOVE - some form of moving a hand directly to a particular
card based on its position

o COMPARE - some way to compare cards and do something
based on the result

o GO TO LINE - some way to jump to an earlier or later line in
the program

o PICK UP/PUT DOWN - when to put the card back




To be clear, let’s formalize what we have been doing
into a language...

We are going to use the “Human Machine Language
— Activity Guide”

Step 1: Read the first page

Step 2: With a partner figure out the example
programs (one reads, one acts out)

Step 3: Review as a class



Challenge: Find Min with the Human Machine
Language

First identify what’s different about the problem
setup for the Human Machine Language

Second, use the Human Machine Language to write
the algorithm for finding the min card

Finally, share solutions with other pairs



Wrap-up: The “Art” of Programming

O

» Notice two things about algorithms and
programming...

Different algorithms can be developed to solve the same
problem (EK 4.1.1H)

Different code can be written to implement the same algorithm

» In programming, just like art, we strive to make
beautiful things:

A beautiful algorithm is an elegant and clever idea for how to
solve a problem

A beautiful program is an elegant use of whatever language

structures are provided to make the algorithm actually work on
a computer




