
Adapted from Code.org curriculum 



 
 Identify an array as a data structure to store lists of 

information in programs 

Create arrays and access information stored within 
them using an index 

Manipulate an array using the append, insert, and 
remove operations 

Account for the fact that JavaScript arrays are zero-
indexed when using them in a program 

Objectives: 



 
What might we use lists for? 

 To organize information 

 Collect relevant information in one place 

 To order or prioritize ideas 

 

Discussion: 



 
App Lab – Code Studio Stage 13 

Activity:  



 
 removeItem(list, index) 

 insertItem(list, index, item) 

 list.length 

  var list = [“a”, “b”, “c”, “d”]; 

 var x = [1, 2, 3, 4] 

 appendItem(list, item) 

Introduced Code: 



 
Your app needs to store the following information. 

Decide whether you would use an array or a variable 
to store it: 

 All the messages a user has sent 

 The highest score a user has ever reached on the app 

 A username and password to unlock the app 

 In general, when do you think you should store 
information in an array, and when should you use a 
variable?  

Wrap-up: 



 
Variables store single pieces of information, while 

arrays store many 

An array can grow in size to accommodate more 
information 

Arrays are slightly more complex to use than 
variables. If you are only going to be storing a fixed 
amount of information, it is probably appropriate to 
use multiple variables 

Key Points: 



 
Array – A data structure in JavaScript used to 

represent a list 

 List – A generic term for a programming data 
structure that holds multiple items 

Vocabulary 



Adapted from Code.org curriculum 



 
Use an array to maintain a collection of data in a 

program 

Create apps that allow user interaction through key 
events 

Refactor code in order to appropriately incorporate 
new functionality while maintaining readability and 
consistency 

Objectives: 



 
When we want to add new functionality to our 

programs, we’ll of course have to write new code.  

 Sometimes, when we add new code to an existing 
program, we’ll also have to make changes to the 
original components of our program. Why might this 
be the case? 

 Contradicting code 

 Redundant components 

 New, better code 

Coding is an iterative process 

Getting Started 



 
 playSound 

 onEvent(id, type, function(event)){…} 

 setImageURL 

Introduced Code: 



 
Refactoring is the process of changing the way we wrote old 

code in order to keep programs consistent and readable 
while incorporating new functionality 

 It is possible that refactoring code will not change the user’s 
experience but will make the program easier to read and 
maintain 

 Refactoring is a useful process, but it can be time consuming 
and challenging. We’d ideally not refactor code very often 
but it is sometimes necessary 

Good planning and design can help avoid refactoring. Good 
use of functions and an organized program means that at 
the very least we limit areas that need to be changed 

 

Key Points: 



 
Key Event – in JavaScript an even triggered by 

pressing or releasing a key on the keyboard. For 
example: “key up” and “keydown” are event types 
you can specify. Use event.key – from the “event” 
parameter of the onEvent callback function – to 
figure out which key was pressed 

Vocabulary: 



Adapted from Code.org curriculum 



 
Use a for loop in a program to implement an 

algorithm that processes all elements of an array 

Write code that implements a linear search on an 
unsorted array of numbers 

Write code to find the minimum value in an 
unsorted list of numbers 

 Explain how binary search is more efficient than 
linear search but can only be used on sorted lists 

Objectives 



 
Remember the FindMin problem you wrote an 

algorithm for back in Unit 3 (with the cards) with the 
Human Machine Language? 

 Today we will use the common pattern of using a 
loop to visit every element in the list, rather than the 
jump command 

Getting Started: 



 
We will start with looking back at the Minimum 

Card Algorithm  

 Now you can write using pseudocode 

 The same kind of thinking that went into designing 
this algorithm can be applied to making working 
code as well. 

 Today you’ll get some practice writing code with 
loops and if-statements to process a list – skills that 
will help you write you own algorithms for lists. 

 

 

Getting Started 



 
Code Studio – Stage 15 

Activity 1: App Lab 



 
We will use the “Card Search Algorithm” Activity 

Guide 

Note:  

 What you programmed was a “linear search” 

 This activity is a “binary search,” which is faster, but 
requires you to sort first… 

Activity 2: Unplugged 



 
When you talk about how “long” or how much 

“time” an algorithm takes to run, time is usually a 
measure of the number of operations a computer 
needs to perform to complete the task. 

You can measure the amount of time it takes to run 
an algorithm on a clock, but it’s often not a useful 
measure, because the speed of the computer 
hardware obscures whether the algorithm is good or 
not. 

Wrap-up 



 
 “4.2.4 Evaluate algorithms analytically and 

empirically for efficiency, correctness, and clarity.” 

Come up with a brief (60 second) explanation of the 
statement and relate it to something you experienced 
as part of this lesson 

You will have 3 minutes to discuss 

Whip-Around 

5 Statements 



 
 

5 Statements 



 
Consolidates all of the pieces we need to keep track 

of a counter 

 Counter variable, incrementing, and boolean condition 
(in one line) 

The For Loop 



 
 for(var i = 0; i<4; i++){  //code} 

 function myFunction(n){ //code } 

Introduced Code: 



 
 For loop – A typical looping construct designed to 

make it easy to repeat a section of code using a 
counter variable. The for loop combines the creation 
of a variable, a boolean looping condition, and an 
update to the variable in one statement 

Vocabulary: 


